J Inorg Biochem
November 2024
This study investigates the effects of Pt and Ru complexes containing a Schiff base with a diimine structure on Alzheimer's disease. The Schiff base (N1E,N2E)-N1,N2-bis(isoquinolin-4-ylmethylene)benzene-1,2-diamine (I) and the novel Pt(II) and Ru(II) complexes (Ia and Ib) were synthesized and characterized using FTIR, NMR (H, C), mass spectrometry, and elemental analyses. Their ability to inhibit amyloid beta (Aβ) aggregation was determined in vitro using the SH-SY5Y cell line.
View Article and Find Full Text PDFBackground: Accurate prediction of short-term mortality in patients with acute pulmonary embolism (PE) is critical for optimizing treatment strategies and improving patient outcomes. The Pulmonary Embolism Severity Index (PESI) is the current reference score used for this purpose, but it has limitations regarding predictive accuracy. Our aim was to develop a new short-term mortality prediction model for PE patients based on deep learning (DL) with multimodal data, including imaging and clinical/demographic data.
View Article and Find Full Text PDFBackground: Single-photon emission computed tomography (SPECT) analysis relies on qualitative visual assessment or semi-quantitative measures like total perfusion deficit that play a critical role in the non-invasive diagnosis of coronary artery disease by assessing regional blood flow abnormalities. Recently, machine learning (ML) -based analysis of SPECT images for coronary artery disease diagnosis has shown promise, with its utility in predicting long-term patient outcomes (prognosis) remaining an active area of investigation. In this review, we comprehensively examine the current landscape of ML-based analysis of SPECT imaging with an emphasis on prognostication of coronary artery disease.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting using photocrosslinkable hydrogels has gained considerable attention due to its versatility in various applications, including tissue engineering and drug delivery. Egg White (EW) is an organic biomaterial with excellent potential in tissue engineering. It provides abundant proteins, along with biocompatibility, bioactivity, adjustable mechanical properties, and intrinsic antiviral and antibacterial features.
View Article and Find Full Text PDFBackground: Pulmonary hypertension (PH) involves increased arterial stiffness and reduced vascular tone, affecting pulmonary arterial wave reflections. The Reflection Index (RI) may provide insights into these changes.
Objective: This study examines the utility of RI in PH patients by correlating it with key right heart catheterization (RHC) parameters.