According to action control theories, responding to a stimulus leads to the binding of response and stimulus features into a common representation, that is, an event file. Repeating any component of an event file retrieves all previously bound information, leading to performance costs for partial repetitions measured in so-called binding effects. Although otherwise robust and stable, binding effects are typically completely absent in "localization tasks," in which participants localize targets with spatially compatible responses.
View Article and Find Full Text PDFObjectives: The integrity of cortical motor networks and their descending effector pathway (the corticospinal tract [CST]) is a major determinant motor recovery after stroke. However, this view neglects the importance of ascending tracts and their modulatory effects on cortical physiology. Here, we explore the role of such a tract that connects dopaminergic ventral tegmental midbrain nuclei to the motor cortex (the VTMC tract) for post-stroke recovery.
View Article and Find Full Text PDFTrait-associated loci often map to genomic regions encoding long noncoding RNAs (lncRNAs), but the role of these lncRNAs in disease etiology is largely unexplored. We show that a pair of sense/antisense lncRNA (6p22lncRNAs) encoded by CASC15 and NBAT1 located at the neuroblastoma (NB) risk-associated 6p22.3 locus are tumor suppressors and show reduced expression in high-risk NBs.
View Article and Find Full Text PDFBackground: Current risk stratification systems for neuroblastoma patients consider clinical, histopathological, and genetic variables, and additional prognostic markers have been proposed in recent years. We here sought to select highly informative covariates in a multistep strategy based on consecutive Cox regression models, resulting in a risk score that integrates hazard ratios of prognostic variables.
Methods: A cohort of 695 neuroblastoma patients was divided into a discovery set (n=75) for multigene predictor generation, a training set (n=411) for risk score development, and a validation set (n=209).
Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood.
View Article and Find Full Text PDF