Publications by authors named "A Engelman"

The early stages of HIV-1 infection include the trafficking of the viral core into the nucleus of infected cells. However, much remains to be understood about how HIV-1 accomplishes nuclear import and the consequences of the import pathways utilized on nuclear events. The host factor cleavage and polyadenylation specificity factor 6 (CPSF6) assists HIV-1 nuclear localization and post-entry integration targeting.

View Article and Find Full Text PDF

Disruption of HIV-1 Integrase (IN) interactions with the host-factor Lens Epithelium-Derived Growth Factor (LEDGF)/p75 leads to decreased, random integration, increased latent infection, and described here, accumulation of HIV-1 antisense RNA (asRNA). asRNA increase was observed following interruptions of IN-LEDGF/p75 interactions either through pharmacologic perturbations of IN-LEDGF/p75 by treatment with allosteric HIV-1 integrase inhibitors (ALLINIs) or in cell lines with LEDGF genetic knockout. Additionally, by impairing Tat-dependent HIV transcription, asRNA abundance markedly increases.

View Article and Find Full Text PDF

Unlabelled: Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.

View Article and Find Full Text PDF

Unlabelled: Lenacapavir (LEN) is the first in class viral capsid protein (CA) targeting antiretroviral for treating multi-drug-resistant HIV-1 infection. Clinical trials and cell culture experiments have identified resistance associated mutations (RAMs) in the vicinity of the hydrophobic CA pocket targeted by LEN. The M66I substitution conferred by far the highest level of resistance to the inhibitor compared to other RAMs.

View Article and Find Full Text PDF

HIV-1 integration favors nuclear speckle (NS)-proximal chromatin and viral infection induces the formation of capsid-dependent CPSF6 condensates that colocalize with nuclear speckles (NSs). Although CPSF6 displays liquid-liquid phase separation (LLPS) activity in vitro, the contributions of its different intrinsically disordered regions, which includes a central prion-like domain (PrLD) with capsid binding FG motif and C-terminal mixed-charge domain (MCD), to LLPS activity and to HIV-1 infection remain unclear. Herein, we determined that the PrLD and MCD both contribute to CPSF6 LLPS activity in vitro.

View Article and Find Full Text PDF