Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen To overcome this limitation and enable the straightforward investigation of gene functions in , we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for .
View Article and Find Full Text PDFThe cellular proteome comprises all proteins expressed at a given time and defines an organism's phenotype under specific growth conditions. The proteome is shaped and remodeled by both protein synthesis and protein degradation. Here, we developed a new method which combines metabolic and chemical isobaric peptide labeling to simultaneously determine the time-resolved protein decay and synthesis in an intracellular human pathogen.
View Article and Find Full Text PDF