Publications by authors named "A Ellies"

The spatial distribution and vertical migration of global fallout (137)Cs were studied in soils from South Patagonia at the austral region of South America in semi-natural and natural environments located between 50-54 degrees S and 68-74 degrees W. The (137)Cs areal activity density varied from 222 to 858 Bq m(-2), and was found to be significantly positively correlated (p<0.001) with the mean annual precipitation rate.

View Article and Find Full Text PDF

To improve the knowledge about the (137)Cs spatial distribution and vertical migration in soils of the Southern Hemisphere, the total areal activity density and the vertical transport parameters of this radionuclide were measured in an Antarctic region. For this purpose vegetation and incremental soil samples were collected at 21 representative sites located at 4 islands of the South Shetland Archipelago: King George, Robert, Greenwich and Snow (62-63 degrees S and 58-62 degrees W). The total (137)Cs activity density varied considerably from 118 to 662 Bq m(-2) (median 384 Bq m(-2), reference date 1995), with a high percentage of the total activity retained in the vegetation cover (5-98% in moss, 3-20% in lichen and 4-12% in grass).

View Article and Find Full Text PDF

The contamination and depth distribution of 137Cs in soil due to the fallout from atmospheric weapons' tests were measured at 29 sites in the 9th and 10th administrative regions in Chile located in the 40 degrees latitude in the southern hemisphere. The depth distribution in most of the sites follows no systematic pattern in the upper few centimetres, but below this depth an exponential decline could be deduced. The calculated relaxation depth appears to be a good indicator for estimating the long-term 137Cs distribution in these soil profiles.

View Article and Find Full Text PDF

The time dependency of nuclear test 137Cs in soil, prairie plants, and milk was observed on pastures of seven dairy farms in the 10th Region, Chile, from 1982 to 1997, without any appreciable deposition of radioactive fallout after 1983. Whereas the 137Cs concentration in the soil decreased at a rate close to that of the radionuclide's physical decay during the whole observation period, the rate of decrease of the 137Cs concentration in the prairie plants and in the milk, having been very rapid between 1982-1990, became slower between 1991-1997. The effective half-lives of the concentration in plants were found to be 5.

View Article and Find Full Text PDF