Locomotion, like all behaviors, possesses an inherent flexibility that allows for the scaling of movement kinematic features, such as speed and vigor, in response to an ever-changing external world and internal drives. This flexibility is embedded in the organization of the spinal locomotor circuits, which encode and decode commands from the brainstem and proprioceptive feedback. This review highlights our current understanding of the modular organization of these locomotor circuits and how this modularity endows them with intrinsic mechanisms to adjust speed and vigor, thereby contributing to the flexibility of locomotor movements.
View Article and Find Full Text PDFThe flexibility of motor actions is ingrained in the diversity of neurons and how they are organized into functional circuit modules, yet our knowledge of the molecular underpinning of motor circuit modularity remains limited. Here we use adult zebrafish to link the molecular diversity of motoneurons (MNs) and the rhythm-generating V2a interneurons (INs) with the modular circuit organization that is responsible for changes in locomotor speed. We show that the molecular diversity of MNs and V2a INs reflects their functional segregation into slow, intermediate or fast subtypes.
View Article and Find Full Text PDFCurr Opin Neurobiol
October 2023
Our movements and actions stem from complex processes in the central nervous system. Precise adaptation of locomotor movements is essential for effectively interacting with the environment. To understand the mechanisms underlying these movements, it is crucial to determine the organization of spinal circuits at the level of individual neurons and synapses.
View Article and Find Full Text PDFIn adult zebrafish, slow, intermediate, and fast muscle fibers occupy distinct regions of the axial muscle, allowing the use of retrograde tracers for selective targeting of the motoneurons (MNs) innervating them. Here, we describe a protocol to label distinct MN pools and tissue processing for visualization with confocal laser microscopy. We outline the different steps for selective labeling of primary and secondary MNs together with spinal cord fixation, isolation, mounting, and imaging.
View Article and Find Full Text PDFThe flexibility of locomotor movements requires an accurate control of their start, duration, and speed. How brainstem circuits encode and convey these locomotor parameters remains unclear. Here, we have combined in vivo calcium imaging, electrophysiology, anatomy, and behavior in adult zebrafish to address these questions.
View Article and Find Full Text PDF