Publications by authors named "A Eklof"

Loss of species in food webs can set in motion a cascade of additional (secondary) extinctions. A species' position in a food web (e.g.

View Article and Find Full Text PDF

Eco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species' interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities.

View Article and Find Full Text PDF

Valuing, managing and conserving marine biodiversity and a full range of ecosystem services is at the forefront of research and policy agendas. However, biodiversity is being lost at up to a thousand times the average background rate. Traditional disciplinary and siloed conservation approaches are not able to tackle this massive loss of biodiversity because they generally ignore or overlook the interactive and dynamic nature of ecosystems processes, limiting their predictability.

View Article and Find Full Text PDF

We develop a novel approach to analyse trophic metacommunities, which allows us to explore how progressive habitat loss affects food webs. Our method combines classic metapopulation models on fragmented landscapes with a Bayesian network representation of trophic interactions for calculating local extinction rates. This means that we can repurpose known results from classic metapopulation theory for trophic metacommunities, such as ranking the habitat patches of the landscape with respect to their importance to the persistence of the metacommunity as a whole.

View Article and Find Full Text PDF