Publications by authors named "A Eiche"

p-Aminophenol (PAP; as a component of, e.g., hair dyes, photographic developers, as adsorbent in gas filters, as a metabolite of various fungicides, pesticides and drugs) has been tested for genotoxicity in Drosophila by means of the sex-linked recessive lethal test (SLRLT) and the somatic mutation and recombination test (SMART) of the wing.

View Article and Find Full Text PDF

Evidence has been accumulating that conditions of nonphysiological pH may affect the results of in vitro genetic tests by mechanisms unrelated to the chemical being tested. Medium was pH-adjusted with HCl, NaOH or with organic buffers (Good's zwitterions). In the absence of S9 mix, no changes in mutant frequency were observed over a pH range of 6.

View Article and Find Full Text PDF

The genetic toxicity of dopamine was studied in a battery of test systems including DNA single-strand break analysis in cultured human skin fibroblasts, the Salmonella/mammalian-microsome mutagenicity test, sister-chromatid exchange analysis in human lymphocytes, the mouse-lymphoma forward mutation assay, the sex-linked recessive lethal test in Drosophila melanogaster and the micronucleus test in mouse and rat. Dopamine at concentrations of 50-300 micrograms/ml induced DNA strand breaks in human fibroblasts. It also gave a positive response in the mouse-lymphoma forward mutation assay, where a dose-dependent increase in the frequency of mutant cells was observed in the presence of dopamine, 94-750 micrograms/ml.

View Article and Find Full Text PDF

Tests of X-ray-induced recessive lethal mutations in adult and foetal mouse females were performed. The tests were based on family analysis which provided a possibility of making a distinction between pre-existing recessive lethal mutations and newly arisen (spontaneous + induced) ones. The way the tests were carried out provided material for the estimation of the frequency of spontaneous lethal mutations per genome.

View Article and Find Full Text PDF