Publications by authors named "A E Zhidkov"

High-power laser applications, and especially laser wakefield acceleration, continue to draw attention through various research topics, and may bring many industrial applications based on compact accelerators, from ultrafast imaging to cancer therapy. However, one main step towards this is the arch issue of stability. Indeed, the interaction of a complex, aberrated laser beam with plasma involves a lot of physical phenomena and non-linear effects, such as self-focusing and filamentation.

View Article and Find Full Text PDF

The sharp density down-ramp injection (shock injection) mechanism produces the quasi-monoenergetic electron beam with a bunch duration of tens of femtoseconds via laser wakefield acceleration. The stability of the accelerated electron beam strongly depends on the stability of the laser beam and the shock structure produced by the supersonic gas nozzle. In this paper, we report the study of a newly designed modular supersonic nozzle with a flexible stilling chamber and a converging-diverging structure.

View Article and Find Full Text PDF
Article Synopsis
  • Laser wakefield acceleration (LWFA) is gaining global interest due to its promising potential to match classical accelerators, but challenges in stability and reliability hinder its widespread use.
  • The study investigates how controlling laser wavefronts, particularly through introducing aberrations, affects electron beam characteristics in an LWFA accelerator, revealing that complex wavefronts can outperform the traditionally accepted Gaussian distribution.
  • Findings demonstrate a clear relationship between different input wavefronts and the stability, acceleration, and injection of electron beams, suggesting improvements in laser tuning could enhance control over LWFA-generated electrons.
View Article and Find Full Text PDF

Staging laser wake-field acceleration is considered to be a necessary technique for developing full-optical jitter-free high energy electron accelerators. Splitting of the acceleration length into several technical parts and with independent laser drivers allows not only the generation of stable, reproducible acceleration fields but also overcoming the dephasing length while maintaining an overall high acceleration gradient and a compact footprint. Temporal and spatial coupling of pre-accelerated electron bunches for their injection in the acceleration phase of a successive laser pulse wake field is the key part of the staging laser-driven acceleration.

View Article and Find Full Text PDF

By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~10 W/cm). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas.

View Article and Find Full Text PDF