Increased glycolytic flux is a hallmark of cancer; however, an increasing body of evidence indicates that glycolytic ATP production may be dispensable in cancer, as metabolic plasticity allows cancer cells to readily adapt to disruption of glycolysis by increasing ATP production via oxidative phosphorylation. Using functional genomic screening, we show here that liver cancer cells show a unique sensitivity toward aldolase A (ALDOA) depletion. Targeting glycolysis by disrupting the catalytic activity of ALDOA led to severe energy stress and cell cycle arrest in murine and human hepatocellular carcinoma cell lines.
View Article and Find Full Text PDFBackground And Objectives: Neonatal encephalopathy (NE) is characterized by an abnormal level of consciousness with or without seizures in the neonatal period. It affects 1-6/1,000 live term newborns. We applied genome sequencing (GS) in term newborns with NE to investigate the underlying genetic causes.
View Article and Find Full Text PDFHepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.
View Article and Find Full Text PDFPathogens play a key role in individual function and the dynamics of wild populations, but the link between pathogens and individual performance has rarely been investigated in the wild. Migrating salmonids offer an ideal study system to investigate how infection with pathogens affects performance given that climate change and fish farming portend increasing prevalence of pathogens in wild populations. To test for effects of pathogen burden on the performance of a migrating salmonid, we paired data from individual brown trout tagged with acoustic accelerometer transmitters and gill biopsies to investigate how pathogen infection affected whole animal activity during the spawning migration.
View Article and Find Full Text PDFHybrid hydrogels are promising for wound dressing, tissue engineering, and drug delivery due to their exceptional biocompatibility and mechanical stability. This study synthesized hybrid hydrogels for photodynamic therapy using electron beam-initiated polymerization with varying PEGDA/gelatin ratios and irradiation doses to evaluate their effectiveness as uptake and release systems for five photosensitizers. Toluidine blue, O (TBO); methylene blue (MB); eosin, Y; indocyanine, green; and sodium meso-tetraphenylporphine-4,4',4″,4‴-tetrasulfonate were studied for their uptake and release dynamics in relation to their structural properties and the hydrogels' composition.
View Article and Find Full Text PDF