Publications by authors named "A E Platts"

Camelina (), an allohexaploid species, is an emerging aviation biofuel crop that has been the focus of resurgent interest in recent decades. To guide future breeding and crop improvement efforts, the community requires a deeper comprehension of subgenome dominance, often noted in allopolyploid species, "alongside an understanding of the genetic diversity" and population structure of material present within breeding programs. We conducted population genetic analyses of a diversity panel, leveraging a new genome, to estimate nucleotide diversity and population structure, and analyzed for patterns of subgenome expression dominance among different organs.

View Article and Find Full Text PDF

Fertilization is a fundamental process that triggers seed and fruit development, but the molecular mechanisms underlying fertilization-induced seed development are poorly understood. Previous research has established AGamous-Like62 (AGL62) activation and auxin biosynthesis in the endosperm as key events following fertilization in Arabidopsis (Arabidopsis thaliana) and wild strawberry (Fragaria vesca). To test the hypothesis that epigenetic mechanisms are critical in mediating the effect of fertilization on the activation of AGL62 and auxin biosynthesis in the endosperm, we first identified and analyzed imprinted genes from the endosperm of wild strawberries.

View Article and Find Full Text PDF

Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic structural variants and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic structural variants and then genotyped a large maize diversity panel for these variants using short-read sequencing data.

View Article and Find Full Text PDF

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes).

View Article and Find Full Text PDF
Article Synopsis
  • Teleost fishes are the most diverse group of vertebrates and have a history of polyploidy, including instances of subgenome dominance where one subgenome is more expressed than the other.
  • Recent research analyzed the genomes of 21 cyprinids (like common carp and goldfish) to explore subgenome evolution after multiple allopolyploidy events.
  • The study found that subgenome dominance likely results from factors like maternal influence and the density of transposable elements, shedding light on how polyploidy affects evolution in these fishes.
View Article and Find Full Text PDF