The ubiquitous use of volatile siloxanes in a myriad of product formulations has led to a widespread distribution of these persistent contaminants in both natural ecosystems and wastewater treatment plants. Microbial degradation under microaerobic conditions is a promising approach to mitigate D4 and D5 siloxanes while recovering energy in wastewater treatment plants. This study examined D4/D5 siloxanes biodegradation under both anaerobic and microaerobic conditions ( [Formula: see text] = 0, 1, 3 %) using wastewater sludge.
View Article and Find Full Text PDFLactate is among the top-ten-biobased products. It occurs naturally as D- or L-isomer and as a racemic mixture (DL-lactate). Generally, lactate with a high optical purity is more valuable.
View Article and Find Full Text PDFVolatile organic silicon compounds (VOSiC) are harmful pollutants to the biota and ecological dynamics as well as biogas-based energy conversion systems. However, there is a lack of understanding regarding the source of VOSiCs in biogas, especially arising from the biochemical conversion of siloxane polymers such as polydimethylsiloxanes (PDMS). The biodegradation of PDMS was evaluated under anaerobic/microaerobic conditions (P = 0, 1, 3, 5%), using wastewater treatment plant (WWTP) sludge as an inoculum and PDMS as a co-substrate (0, 50, 100, 500 ppm).
View Article and Find Full Text PDFThe bio-flocculants used in this study were synthesised by the Mannich reaction, which includes three reagents: a substrate (tannin extracts of Acacia, Quebracho, and Castanea), formaldehyde, and an amine derivative (ethanolamine, diethanolamine, ammonium chloride). Nine natural flocculants were prepared by combining extracts and amines; these products were evaluated in three different wastewater samples in two experimental phases. In phase I, five physicochemical parameters were analysed.
View Article and Find Full Text PDF