Publications by authors named "A E Kostanyan"

Analytical, preparative and industrial scale counter-current chromatography (CCC) processes differ in the volumes of the loaded solution of components to be separated and in the design of the equipment. Preliminary mathematical modeling is necessary for selection of the optimal design and operation mode of these CCC separations. This study aims to compare simulations of CCC separations at different scales, using an exact description based on the model of equilibrium cells and a much simpler approximate solution based on the Gaussian distribution.

View Article and Find Full Text PDF

This article is devoted to a brief review of the modelling of liquid membrane separation methods, such as emulsion, supported liquid membranes, film pertraction, and three-phase and multi-phase extraction. Mathematical models and comparative analyses of liquid membrane separations with different flow modes of contacting liquid phases are presented. A comparison of the processes of conventional and liquid membrane separations is carried out under the following assumptions: mass transfer is described by the traditional mass transfer equation; the equilibrium distribution coefficients of a component passing from one of the phases to another are constant.

View Article and Find Full Text PDF

Pseudo-liquid membranes are extraction devices in which a liquid membrane phase is retained in an apparatus consisting of two interconnected chambers while feed and stripping phases pass through the stationary liquid membrane phase as mobile phases. The organic phase of the liquid membrane sequentially contacts the aqueous phases of the feed and stripping solutions in the extraction and stripping chambers, recirculating between them. This extraction separation method, called multiphase pseudo-liquid membrane extraction, can be implemented using traditional extraction equipment: extraction columns and mixer-settlers.

View Article and Find Full Text PDF

To promote the implementation of liquid membrane separations in industry, we have previously proposed extraction methods called three- and multi-phase extraction. The three-phase multi-stage extraction is carried out in a cascade of bulk liquid membrane separation stages, each comprising two interconnected (extraction and stripping) chambers. The organic liquid membrane phase recycles between the chambers within the same stage.

View Article and Find Full Text PDF

To improve the efficiency of countercurrent chromatography (CCC) separations, we have previously proposed a new sample loading method called intermittent sample loading (ISL), in which continuous sample feed alternates with short periods of "clean" mobile phase feed to the CCC device. In semi-continuous separation processes, during sample feed periods, the sample is loaded in separate batches, each consisting of a series of intermittent sample loads. It was shown that the application of the intermittent sample loading method in the conventional isocratic CCC separations significantly increased process productivity and the concentration of compounds in the separated fractions.

View Article and Find Full Text PDF