Publications by authors named "A E Holtzman"

Background: In sinonasal cancer (SNC), treatment with proton therapy (PT) provides excellent local control, especially after gross total resection. Because of the heterogeneity and rarity of this disease site, a comprehensive assessment of toxicity, survival, and control rates is lacking. Our primary objective was to assess the toxicity outcomes of PT in SNC patients, with a secondary aim of assessing survival and tumor control after PT.

View Article and Find Full Text PDF

Heavy ion radiotherapy is an emerging technology for treating radioresistant solid tumors. Unlike current low-linear energy transfer techniques, heavy ion radiotherapy, such as carbon ion radiotherapy, enhances the biologic effects related to cancer therapy. Prospective clinical evidence has demonstrated feasibility and efficacy in several disease sites, including head and neck, thoracic, central nervous system, gastrointestinal, pelvic tumors, and sarcomas.

View Article and Find Full Text PDF

Purpose: Proton beam therapy (PBT) plays an important role in the management of primary spine tumors. The purpose of this consensus statement was to summarize safe and optimal delivery of PBT for spinal tumors.

Methods And Materials: The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee consisting of radiation oncologists and medical physicists with specific expertise in spinal irradiation developed expert recommendations discussing treatment planning considerations and current approaches in the treatment of primary spinal tumors.

View Article and Find Full Text PDF

Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies.

View Article and Find Full Text PDF