One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARN) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS.
View Article and Find Full Text PDFThe gonadotropin-releasing hormone (GnRH) neurons operate as a neuronal ensemble exhibiting coordinated activity once every reproductive cycle to generate the preovulatory GnRH surge. Using GCaMP fibre photometry at the GnRH neuron distal dendrons to measure the output of this widely scattered population in female mice, we find that the onset, amplitude, and profile of GnRH neuron surge activity exhibits substantial variability from cycle to cycle both between and within individual mice. This was also evident when measuring successive proestrous luteinizing hormone surges.
View Article and Find Full Text PDFThe arcuate nucleus kisspeptin (ARNKISS) neurons represent the GnRH pulse generator that likely drives pulsatile gonadotropin secretion in all mammals. Using an improved GCaMP fiber photometry system enabling long-term continuous recordings, we aimed to establish a definitive profile of ARNKISS neuronal activity across the murine estrous cycle. As noted previously, a substantial reduction in the frequency of ARNKISS neuron synchronization events (SEs) occurs on late proestrus and extends into estrus.
View Article and Find Full Text PDFThe mechanism by which arcuate kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to drive pulsatile hormone secretion remains unclear in females. In order to study spontaneous synchronization within the ARNKISS neuron network, acute brain slices were prepared from adult female Kiss1-GCaMP6 mice. Analysis of both spontaneous synchronizations and those driven by high frequency stimulation of individual ARNKISS neurons revealed that the network exhibits semi-random emergent excitation dependent upon glutamate signaling through AMPA receptors.
View Article and Find Full Text PDF