Composites comprising vanadium-pentoxide (VO) and single-walled carbon nanotubes (SWCNTs) are promising components for emerging applications in optoelectronics, solar cells, chemical and electrochemical sensors, . We propose a novel, simple, and facile approach for SWCNT covering with VO by spin coating under ambient conditions. With the hydrolysis-polycondensation of the precursor (vanadyl triisopropoxide) directly on the surface of SWCNTs, the nm-thick layer of oxide is amorphous with a work function of 4.
View Article and Find Full Text PDFWe propose a novel approach to disperse and extract small-diameter single-walled carbon nanotubes (SWCNTs) using an aqueous solution of riboflavin and Sephacryl gel. The extraction of small-diameter semiconducting SWCNTs was observed, regardless of the initial diameter distribution of the SWCNTs. Dispersion of SWCNTs occurs due to the adsorption of π-conjugated isoalloxazine moieties on the surface of small-diameter nanotubes and interactions between hydroxy groups of ribityl chains with water.
View Article and Find Full Text PDFCarbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation-condensation flow-levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.
View Article and Find Full Text PDFA machine learning technique, namely, support vector regression, is implemented to enhance single-walled carbon nanotube (SWCNT) thin-film performance for transparent and conducting applications. We collected a comprehensive data set describing the influence of synthesis parameters (temperature and CO concentration) on the equivalent sheet resistance (at 90% transmittance in the visible light range) for SWCNT films obtained by a semi-industrial aerosol (floating-catalyst) CVD with CO as a carbon source and ferrocene as a catalyst precursor. The predictive model trained on the data set shows principal applicability of the method for refining synthesis conditions toward the advanced optoelectronic performance of multiparameter processes such as nanotube growth.
View Article and Find Full Text PDFWe propose a novel, scalable, and simple method for aerosol doping of single-walled carbon nanotube (SWCNT) films. This method is based on aerosolization of a dopant solution (HAuCl in ethanol) and time-controlled deposition of uniform aerosol particles on the nanotube film surface. The approach developed allows fine-tuning of the SWCNT work function in the range of 4.
View Article and Find Full Text PDF