Publications by authors named "A E Forand"

Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in tibialis anterior muscle of adult aged (20 months) mice and performed molecular and functional analysis of skeletal muscle.

View Article and Find Full Text PDF

The sarcoplasmic reticulum (SR) plays an important role in calcium homeostasis. SR calcium mishandling is described in pathological conditions, such as myopathies. Here, we investigated whether the nuclear receptor subfamily 1 group D member (NR1D1, also called REV-ERBα) regulates skeletal muscle SR calcium homeostasis.

View Article and Find Full Text PDF

Duchenne muscular dystrophy is a severe neuromuscular disease causing a progressive muscle wasting due to mutations in the DMD gene that lead to the absence of dystrophin protein. Adeno-associated virus (AAV)-based therapies aiming to restore dystrophin in muscles, by either exon skipping or microdystrophin expression, are very promising. However, the absence of dystrophin induces cellular perturbations that hinder AAV therapy efficiency.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how de-methyl esterification of homogalacturonan, combined with calcium cross-linking, may improve freezing survival in cold-acclimated plants by making their cell walls less porous.
  • Japanese bunching onion leaves showed an 8 °C increase in freezing survival and a significant reduction in tissue permeability after two weeks of cold acclimation, linked to higher pectin methylesterase activity and lower homogalacturonan methylation.
  • Treatment with calcium chloride in non-acclimated plants increased certain cell wall components and decreased visible pores, but did not enhance survival to freezing; rather, it aided in ice nucleation reduction to levels seen in cold-acclimated plants.*
View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca dysregulation linked to Ca influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD glycohydrolase-producing modulators of Ca signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers.

View Article and Find Full Text PDF