Publications by authors named "A Dubavik"

Two-dimensional holographic structures based on photopolymer compositions with luminescent nanoparticles, such as quantum dots, are promising candidates for multiresponsive luminescence sensors. However, their applicability may suffer from the incompatibility of the components, and hence aggregation of the nanoparticles. We showed that the replacement of an organic shell at the CdSe/ZnS quantum dots' surface with monomer molecules of the photopolymerizable medium achieved full compatibility with the surrounding medium.

View Article and Find Full Text PDF

Photothermal therapy (PTT) has attracted increasing interest as a complementary method to be used alongside conventional therapies. Despite a great number of studies in this field, only a few have explored how temperatures affect the outcome of the PTT at nanoscale. In this work, we study the necrosis/apoptosis process of cancerous cells that occurs during PTT, using a combination of local laser heating and nanoscale fluorescence thermometry techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Multifunctional nanocomposites combining magnetic and photoluminescent properties are developed for nanomedical applications.
  • A one-stage microwave synthesis produces magneto-luminescent nanocomposites (MLNC) using carbon dots and magnetic nanoparticles.
  • The resulting MLNCs exhibit excellent water solubility, tunable photoluminescence, and good compatibility with cells, making them promising candidates for bioimaging and therapy.
View Article and Find Full Text PDF

Water-soluble nanocomposites based on CdSe/ZnS quantum dots (QDs) and hydrophobic tetraphenylporphyrin (TPP) molecules passivated by chitosan (CS) have been formed. Magnetic circular dichroism (MCD) spectra evidence TPP presence in both monomeric and agglomerated forms in the nanocomposites. The nanocomposites demonstrate more pronounced singlet oxygen generation compared to free TPP in CS at the same concentration due to the intracomplex Förster resonance energy transfer (FRET) with a 45% average efficiency.

View Article and Find Full Text PDF

Magnetic-luminescent composites based on semiconductor quantum dots (QDs) and superparamagnetic iron oxide nanoparticles (SPIONs) can serve as a platform combining visualization and therapy. Here, we report the construction of QD-SPION nanocomposites based on synthesized SPIONs and alloyed QDs (CdxZn1-xSeyS1-y)/ZnS solubilized with L-cysteine molecules. The study of the spectral-luminescence characteristics, the kinetics of luminescence decay show the composite's stability in a solution.

View Article and Find Full Text PDF