Aims: Drug-induced enteropathy is often associated with the therapeutic use of certain glucuronidated drugs. One such drug is mycophenolic acid (MPA), a well-established immunosuppressant of which gastrointestinal adverse effects are a major concern. The role of bacterial β-glucuronidase (β-G) from the gut microbiota in MPA-induced enteropathy has recently been discovered.
View Article and Find Full Text PDFTransplantation is the treatment of choice for several end-stage organ defects: it considerably improves patient survival and quality of life. However, post-transplant recipients may experience episodes of rejection that can favor or ultimately lead to graft loss. Graft maintenance requires a complex and life-long immunosuppressive treatment.
View Article and Find Full Text PDFBackground: IgA nephropathy (IgAN) often follows infections and features IgA mesangial deposition. Polymeric IgA deposits in the mesangium seem to have varied pathogenic potential, but understanding their pathogenicity remains a challenge. Most mesangial IgA1 in human IgAN has a hypogalactosylated hinge region, but it is unclear whether this is required for IgA deposition.
View Article and Find Full Text PDFCongenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown.
View Article and Find Full Text PDFIgA1 mesangial deposition is the hallmark of IgA nephropathy and Henoch-Schönlein purpura, the onset of which often follows infections. Deposited IgA has been reported as polymeric, J chain associated, and often, hypogalactosylated but with no information concerning the influence of the IgA repertoire or the link between immune stimuli and IgA structure. We explored these issues in the α1KI mouse model, which produces polyclonal human IgA1 prone to mesangial deposition.
View Article and Find Full Text PDF