The atomic numbers and the masses of fragments formed in quasifission reactions are simultaneously measured at scission in ^{48}Ti+^{238}U reactions at a laboratory energy of 286 MeV. The atomic numbers are determined from measured characteristic fluorescence x rays, whereas the masses are obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasifission fragments on a broad angular range, the important role of the proton shell closure at Z=82 is evidenced by the associated maximum production yield, a maximum predicted by time-dependent Hartree-Fock calculations.
View Article and Find Full Text PDFAn atomic clock based on x-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238U + 64Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z=120 compound nuclei.
View Article and Find Full Text PDFPhys Rev Lett
October 2009
An excited state in the proton-rich unbound nucleus 12O was identified at 1.8(4) MeV via missing-mass spectroscopy with the 14O(p,t) reaction at 51 AMeV. The spin-parity of the state was determined to be 0+ or 2+ by comparing the measured differential cross sections with distorted-wave calculations.
View Article and Find Full Text PDFThe rotational band structure of 255Lr has been investigated using advanced in-beam gamma-ray spectroscopic techniques. To date, 255Lr is the heaviest nucleus to be studied in this manner. One rotational band has been unambiguously observed and strong evidence for a second rotational structure was found.
View Article and Find Full Text PDFReaction mechanism analyses performed with a 4pi detector for the systems 208Pb + Ge, 238U + Ni and 238U + Ge, combined with analyses of the associated reaction time distributions, provide us with evidence for nuclei with Z=120 and 124 living longer than 10(-18) s and arising from highly excited compound nuclei. By contrast, the neutron deficient nuclei with Z=114 possibly formed in 208Pb + Ge reactions have shorter lifetimes, close to or below the sensitivity limit of the experiment.
View Article and Find Full Text PDF