In vitro cell cultures are a very useful tool for the validation of biomaterial cytocompatibility, especially for bone tissue engineering scaffolds and bone implants. In this chapter, a protocol for a static three-dimensional osteoblast cell culture on titanium scaffolds and subsequent analysis of osteogenic capacity is presented. The protocol is explained for additively manufactured titanium scaffolds, but it can be extrapolated to other scaffolds with similar size and structure, while differing in composition or manufactured technology.
View Article and Find Full Text PDFHydroxyapatite-based materials have been widely used in countless applications, such as bone regeneration, catalysis, air and water purification or protein separation. Recently, much interest has been given to controlling the aspect ratio of hydroxyapatite crystals from bulk samples. The ability to exert control over the aspect ratio may revolutionize the applications of these materials towards new functional materials.
View Article and Find Full Text PDFPeriprosthetic joint infection (PJI) and implant loosening are the most common complications after joint replacement surgery. Due to their increased surface area, additively manufactured porous metallic implants provide optimal osseointegration but they are also highly susceptible to bacterial colonization. Antibacterial surface coatings of porous metals that do not inhibit osseointegration are therefore highly desirable.
View Article and Find Full Text PDFThe still-growing field of additive manufacturing (AM), which includes 3D printing, has enabled manufacturing of patient-specific medical devices with high geometrical accuracy in a relatively quick manner. However, the development of materials with specific properties is still ongoing, including those for enhanced bone-repair applications. Such applications seek materials with tailored mechanical properties close to bone tissue and, importantly, that can serve as temporary supports, allowing for new bone ingrowth while the material is resorbed.
View Article and Find Full Text PDFThe biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret.
View Article and Find Full Text PDF