The determination of total protein is often a key step for the quantitative analysis of various parameters in tissue and general biochemical research. The classical protocols are restricted to a few compatible buffers, and protocols for the determination of protein in solutions containing protein agglomerates or of protein immobilized on solid surfaces are not available. In such cases, quantification may be complicated.
View Article and Find Full Text PDFPlasmodium falciparum is the causative agent of malaria tropica in man. Biochemical studies were focused on the asexual, intraerythrocytic stages of P. falciparum, because of their role in the clinical phase of the disease and the possibility of propagation in a cell culture system.
View Article and Find Full Text PDFSynthetic peptides were used to probe O- and N-glycosylation reactions in cell-free systems of the parasitic protozoa Plasmodium falciparum, Toxoplasma gondii, and Trypanosoma brucei brucei. O-Glycosylation of the peptide Pro-Tyr-Thr-Val-Val was observed with lysates from all organisms. However, the spectrum of sugars transferred from their respective nucleotide or dolichol-phosphate derivatives to the peptide varied greatly according to the parasite.
View Article and Find Full Text PDFThe pteridine derivative BIBW-22 (4-[N-(2-hydroxy-2-methyl-propyl)-ethanolamino]-2,7-bis(cis-2,6-di methyl-morpholino)-6-phenylpteridine), which had been developed for the treatment of multidrug-resistant cancer and binds to P-glycoprotein, was tested against chloroquine resistant Plasmodium falciparum strains in culture. Based on the result that BIBW-22 enhanced rather than lowered chloroquine resistance in vitro, it is concluded that chloroquine resistance in malaria parasites may not be mechanistically linked to the multidrug-resistant phenotype of chloroquine resistant P. falciparum.
View Article and Find Full Text PDFO-Glycosylation is the major form of protein glycosylation in human erythrocytes infected with the asexual intraerythrocytic stage of the malaria parasite. Plasmodium falciparum. This study compares aspects of O-glycosylation in P.
View Article and Find Full Text PDF