Publications by authors named "A Diaz-Rodriguez"

The rapid growth of the human population has significantly increased the demand for food, leading to the intensification of agricultural practices that negatively impact the environment. Climate change poses a significant threat to global food production, as it can disrupt crop yields and modify the lifecycle stages of phytopathogens and pests. To address these challenges, the use of microbial inoculants, which are bioproducts containing beneficial microorganisms known as plant growth promotion microorganisms (PGPMs), has emerged as an innovative approach in sustainable agriculture.

View Article and Find Full Text PDF

The unspecific peroxygenase (UPO) from (rUPO-PaDa-I-H) is an effective and practical biocatalyst for the oxidative expansion of furfuryl alcohols/amines on a preparative scale, using the Achmatowicz and aza-Achmatowicz reaction. The high activity and stability of the enzyme, which can be produced on a large scale as an air-stable lyophilised powder, renders it a versatile and scalable biocatalyst for the preparation of synthetically valuable 6-hydroxypyranones and dihydropiperidinones. In several cases, the biotransformation out-performed the analogous chemo-catalysed process, and operates under milder and greener reaction conditions.

View Article and Find Full Text PDF

Background: The increase in life expectancy and long-lived individuals is a challenge for public health and provides an opportunity to understand the determinants of longevity. However, few studies have addressed the factors associated with the health status and quality of life in a long-lived individual population. We described the perceived health, clinical status, quality of life, and dependency for activities of daily living in a representative population in Castile and Leon, Spain.

View Article and Find Full Text PDF

Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and HO. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values.

View Article and Find Full Text PDF