Purpose: Endocrine disruptors (EDs) interfere with the endocrine system leading to health consquences and reproductive derangements. Most EDs are environmental pollutants whose risk evaluation is hampered by the simultaneous exposure to a number of chemicals. Here we investigated the possible mechanistic involvement of Sertoli cells, the nurse cell population in the seminiferous tubule, in the reproductive toxicity of Bisphenol A (BPA) and perfluoro-octane sulphonate (PFOS), two acknowledged EDs, at recognized subacute toxic levels.
View Article and Find Full Text PDFAims: Follicle-stimulating hormone (FSH) plays a fundamental role in reproduction stimulating ovarian folliculogenesis, Sertoli cells function and spermatogenesis. However, the recent identification of FSH receptor (FSHR) also in extra-gonadal tissues has suggested that FSH activity may not be limited only to fertility regulation, with conflicting results on the possible role of FSH in endothelial cells. The aim of this study was to investigate FSH role on endothelial function in Human Umbilical Vein Endothelial Cells (HUVECs).
View Article and Find Full Text PDFIntroduction: Perfluoroalkyl substances (PFAS) are widely used, ubiquitous and highly persistent man-made chemicals. Previous cross-sectional studies have consistently linked PFAS exposure to alterations in lipid profiles. However, longitudinal investigations are preferred to mitigate issues related to reverse causation and confounding.
View Article and Find Full Text PDFReduced sperm motility and/or count are among the major causes of reduced fertility in men, and sperm membranes play an important role in the spermatogenesis and fertilization processes. However, the impact of sperm lipid composition on male fertility remains under-investigated. The aim of the present study was to perform a lipidomic analysis of human sperm membranes: we performed an untargeted analysis of membrane lipid composition in fertile (N = 33) and infertile subjects (N = 29).
View Article and Find Full Text PDFInfertility, affecting 15 to 25% of couples in the most developed countries, is recognized by the World Health Organization as a public health issue at a global level. Different causes are acknowledged to reduce fertility in both sexes. In particular, about 40-50% of cases recognize a male factor.
View Article and Find Full Text PDF