Antibody-drug conjugates (ADCs) are a well-established class of therapeutics primarily used in oncology to selectively deliver highly cytotoxic agents into cancer cells. While ADCs should theoretically spare healthy tissues and diminish side effects in patients, off-target toxicity is still observed, all the more serious, as the drugs are extremely potent. In the quest toward safer payloads, we used the conventional chemotherapeutic drug vincristine to develop antibody-vincristine conjugates.
View Article and Find Full Text PDFIn recent decades, subcutaneous (SC) administration of monoclonal antibodies (mAbs) has emerged as a promising alternative to intravenous delivery in oncology, offering comparable therapeutic efficacy while addressing patient preferences. This perspective article provides an in-depth analysis of the technological landscape surrounding SC mAb administration in oncology. It outlines various technologies under evaluation across developmental stages, spanning from preclinical investigations to the integration of established methodologies in clinical practice.
View Article and Find Full Text PDFBispecific antibodies (bsAbs) have recently emerged as a promising platform for the treatment of several conditions, most importantly cancer. Based on the combination of two different antigen-binding motifs in a single macromolecule; bsAbs can either display the combined characteristics of their parent antibodies, or new therapeutic features, inaccessible by the sole combination of two distinct antibodies. While bsAbs are traditionally produced by molecular biology techniques, the chemical development of bsAbs holds great promises and strategies have just begun to surface.
View Article and Find Full Text PDFNanoparticle (NP) surface functionalization with proteins, including monoclonal antibodies (mAbs), mAb fragments, and various peptides, has emerged as a promising strategy to enhance tumor targeting specificity and immune cell interaction. However, these methods often rely on complex chemistry and suffer from batch-dependent outcomes, primarily due to limited control over the protein orientation and quantity on NP surfaces. To address these challenges, a novel approach based on the supramolecular assembly of two peptides is presented to create a heterotetramer displaying VHs on NP surfaces.
View Article and Find Full Text PDF