We herein report our investigations on the use of a tris-silanol-decorated polyoxotungstate, [SbWO(tBuSiOH)], as a molecular support model to describe the coordination of an isolated vanadium atom at metal oxides, focusing on the reactivity of the reduced derivatives in the presence of protons. Accumulation of electrons and protons at an active site is a main feature associated with heterogeneous catalysts able to conduct the (oxy)dehydrogenation of alkanes or alcohols. Our results indicate that two-electron reduced derivatives release H upon protonation, a reaction that probably takes place at the polyoxotungstic framework rather than at the vanadium center.
View Article and Find Full Text PDFBackground: Patients with congenital afibrinogenemia suffer from spontaneous recurrent severe bleeding. While fibrinogen concentrates are known to effectively treat bleeding episodes, thrombotic complications often occur upon replacement therapy, rendering clinical management highly challenging.
Case Presentation: We hereby report a case of combined afibrinogenemia and congenital antithrombin deficiency manifested by recurrent life-threatening bleeding, as well as spontaneous severe arterial occlusion, such as acute coronary syndrome and stroke, and venous thromboses like pulmonary embolism.