Publications by authors named "A Derode"

Multiple scattering of waves presents challenges for imaging complex media but offers potential for their characterization. Its onset is actually governed by the scattering mean free path ℓ_{s} that provides crucial information on the medium microarchitecture. Here, we introduce a reflection matrix method designed to estimate this parameter from the time decay of the single scattering rate.

View Article and Find Full Text PDF

In a heterogeneous medium, the wave field can be decomposed as an infinite series known as the Born expansion. Each term of the Born expansion corresponds to a scattering order, it is thus theoretically possible to discriminate single and multiple scattering contribution to the field. Experimentally, what is actually measured is the total field in which all scattering orders interfere.

View Article and Find Full Text PDF

Ultrasonic evaluation of coarse-grain materials generates multiple scattering at high frequency and large depth. Recent academic experiments with array probes showed the ability of a random matrix method [multiple scattering filter (MSF)] to reduce multiple scattering, hence improving detection. Here, MSF is applied to an industrial nickel-based alloy with coarse-grain structure.

View Article and Find Full Text PDF

Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed c depending on position r.

View Article and Find Full Text PDF

We use dynamic coherent backscattering to study one of the Anderson mobility gaps in the vibrational spectrum of strongly disordered three-dimensional mesoglasses. Comparison of experimental results with the self-consistent theory of localization allows us to estimate the localization (correlation) length as a function of frequency in a wide spectral range covering bands of diffuse transport and a mobility gap delimited by two mobility edges. The results are corroborated by transmission measurements on one of our samples.

View Article and Find Full Text PDF