The permeabilization of the BBB to deliver therapeutics with MR-guided FUS redefines therapeutic strategies as it improves patient outcomes. To ensure the best translation towards clinical treatment, the evaluation of hemodynamic modifications in the CNS is necessary to refine treatment parameters. MR-guided FUS was applied at 1.
View Article and Find Full Text PDFRadiotherapy is a cornerstone of cancer treatment, but tumor hypoxia and resistance to radiation remain significant challenges. Vascular normalization has emerged as a strategy to improve oxygenation and enhance therapeutic outcomes. In this study, we examine the radiosensitization potential of vascular normalization using metformin, a widely used anti-diabetic drug, and oxygen microbubbles (OMBs).
View Article and Find Full Text PDFThe concept of using two-photon excitation in the NIR for the spatiotemporal control of biological processes holds great promise. However, its use for the delivery of nucleic acids has been very scarcely described and the reported procedures are not optimal as they often involve potentially toxic materials and irradiation conditions. This work prepares a simple system made of biocompatible porous silicon nanoparticles (pSiNP) for the safe siRNA photocontrolled delivery and gene silencing in cells upon two-photon excitation.
View Article and Find Full Text PDFThe inadequate level of oxygenation in tumors has been shown to correlate not only with greater invasiveness of cancer cells, but also with a reduction in their sensitivity to anticancer therapies. Over the years, many attempts have been made to increase the oxygenation level of cancer, but most of them have been ineffective. We investigated the heterogeneous response of tumor tissue to phospholipid-coated oxygen microbubbles (OMB) in murine tumors in vivo using oxygen and hemoglobin saturation mapping and the influence of OMB treatment on microvasculature, perfusion, and radiotherapy effectiveness.
View Article and Find Full Text PDFLow tissue oxygenation significantly impairs the effectiveness of cancer therapy and promotes a more aggressive phenotype. Many strategies to improve tissue oxygenation have been proposed throughout the years, but only a few showed significant effects in clinical settings. We investigated stability and ultrasound pulse (UP) triggered oxygen release from phospholipid coated oxygen microbubbles (OMB) in vitro and in murine tumors in vivo using EPR oximetry.
View Article and Find Full Text PDF