Publications by authors named "A Delahodde"

The identification of a point mutation (p.Ser59Leu) in the CHCHD10 gene was the first genetic evidence that mitochondrial dysfunction can trigger motor neuron disease. Since then, we have shown that this mutation leads to the disorganization of the MItochondrial contact site and Cristae Organizing System (MICOS) complex that maintains the mitochondrial cristae structure.

View Article and Find Full Text PDF

Mitochondrial disorders are clinically and genetically heterogeneous, with variants in mitochondrial or nuclear genes leading to varied clinical phenotypes. encodes a mitochondrial protein with cytidine diphosphate-diacylglycerol synthase activity: an essential early step in the biosynthesis of phosphatidylglycerol and cardiolipin. Cardiolipin is a mitochondria-specific phospholipid that is important for many mitochondrial processes.

View Article and Find Full Text PDF

Background: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related () genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare.

View Article and Find Full Text PDF

Mitochondrial diseases result from inherited or spontaneous mutations in mitochondrial or nuclear DNA, leading to an impairment of the oxidative phosphorylation responsible for the synthesis of ATP. To date, there are no effective pharmacological therapies for these pathologies. We performed a yeast-based screening to search for therapeutic drugs to be used for treating mitochondrial diseases associated with dominant mutations in the nuclear gene, which encodes for the mitochondrial ADP/ATP carrier.

View Article and Find Full Text PDF

Acute heat stress (aHS) can induce strong developmental defects in Caenorhabditis elegans larva but not lethality or sterility. This stress results in transitory fragmentation of mitochondria, formation of aggregates in the matrix, and decrease of mitochondrial respiration. Moreover, active autophagic flux associated with mitophagy events enables the rebuilding of the mitochondrial network and developmental recovery, showing that the autophagic response is protective.

View Article and Find Full Text PDF