Identifying the scaling rules describing ecological patterns across time and space is a central challenge in ecology. Taylor's law of fluctuation scaling, which states that the variance of a population's size or density is proportional to a positive power of the mean size or density, has been widely observed in population dynamics and characterizes variability in multiple scientific domains. However, it is unclear if this phenomenon accurately describes ecological patterns across many orders of magnitude in time, and therefore links otherwise disparate observations.
View Article and Find Full Text PDFIntroduction: Arterial stiffening is a hallmark of vascular ageing, and unravelling its underlying mechanisms has become a central theme in the field of cardiovascular disease. While various techniques and experimental setups are accessible for investigating biomechanics of blood vessels both in vivo and ex vivo, comparing findings across diverse methodologies is challenging.
Methods: Arterial stiffness in the aorta of adult (5 months) and aged (24 months) wild-type C57Bl/6J mice was measured in vivo, after which ex vivo biomechanical evaluation was performed using the Rodent Oscillatory Tension Setup to study Arterial Compliance (ROTSAC; University of Antwerp, Belgium) and the DynamX setup (Maastricht University, The Netherlands).
Local biaxial deformation plays a pivotal role in evaluating the tissue state of the ascending aorta and in driving intramural cell-mediated tissue remodeling. Unfortunately, the absence of anatomical markers on the ascending aorta presents challenges in capturing deformation. Utilizing our established intra-operative biaxial strain measurement method, we delineated local biaxial deformation characteristics in patients undergoing aortic valve replacement and coronary artery bypass graft surgery recipients (n = 20), and Aortic Repair surgery patients (n = 47).
View Article and Find Full Text PDFObjectives: Aortic pulse wave velocity (aPWV) predicts cardiovascular risk. Being the reference method for aortic stiffness evaluation, invasive aPWV is also recommended for validation of noninvasive devices. Because of intrinsic haemodynamic variability and processing issues, aPWV shows beat-to-beat variability.
View Article and Find Full Text PDF