The emerging world of 3D food printing is reviewed. Its role in food manufacturing, including benefits and impacts, underemphasized gastrophysical aspects, and limitations are discussed. Foods can be digitally designed and physically prepared using the layer-by-layer deposition of food components, unleashing opportunities to deliver nutritionally personalized food and new food-human interactions.
View Article and Find Full Text PDFRobots in manufacturing alleviate hazardous environmental conditions, reduce the physical/mental stress of the workers, maintain high precision for repetitive movements, reduce errors, speed up production, and minimize production costs. Although robots have pervaded many industrial sectors and domestic environments, the experiments in the food sectors are limited to pick-and-place operations and meat processing while we are assisting new attention in gastronomy. Given the great performances of the robots, there would be many other intriguing applications to explore which could usher the transition to precision food manufacturing.
View Article and Find Full Text PDFSince its conception, the application of 3D printing in the structuring of food materials has been focused on the processing of novel material formulations and customized textures for innovative food applications, such as personalized nutrition and full sensory design. The continuous evolution of the used methods, approaches, and materials has created a solid foundation for technology to process dynamic food structures. Four-dimensional food printing is an extension of 3D printing where food structures are designed and printed to perform time-dependent changes activated by internal or external stimuli.
View Article and Find Full Text PDFCurrent gluten-free products often have nutritional inadequacies. Teff is generating a growing interest for its excellent nutritional value. In this study, the effects of teff enrichment of extruded gluten-free breakfast cereals based on rice flour and two process parameters-feed moisture and temperature-were investigated based on their physical, microstructural and nutritional properties.
View Article and Find Full Text PDFMeat mimics were prepared from pea protein isolate-alginate gel via 3D printing. The texture of 3D-printed meat mimics was modified by incorporating transglutaminase (TGase) or κ-carrageenan (κc) at 0.3, 0.
View Article and Find Full Text PDF