Background And Objectives: Magnetic resonance imaging (MRI) and neurohistopathology are important correlates for evaluation of disease progression in multiple sclerosis (MS). Here we used experimental autoimmune encephalomyelitis (EAE) as an animal model of MS to determine the correlation between clinical EAE severity, MRI and histopathological parameters.
Methods: N = 11 female C57BL/6J mice were immunized with human myelin oligodendrocyte glycoprotein 1-125, while N = 9 remained non-immunized.
Introduction: Multiple sclerosis (MS) is a chronic neurological disorder characterized by the progressive loss of myelin and axonal structures in the central nervous system. Accurate detection and monitoring of MS-related changes in brain structures are crucial for disease management and treatment evaluation. We propose a deep learning algorithm for creating Voxel-Guided Morphometry (VGM) maps from longitudinal MRI brain volumes for analyzing MS disease activity.
View Article and Find Full Text PDFBackground: Several studies have pointed out that seemingly chronic multiple sclerosis (MS) lesions may also be in inflammatory states. In pathological studies, up to 40% of chronic MS lesions are characterized as "chronic active" or "smoldering" lesions that are characterized by a rim of iron-laden proinflammatory macrophages/microglial cells at the lesion edge with low-grade continuous myelin breakdown. In vivo, these lesions can be visualized as "iron rim lesions" (IRLs) on susceptibility-weighted imaging (SWI).
View Article and Find Full Text PDFBackground And Purpose: There has been an increasing interest in chronic active multiple sclerosis (MS) lesions as a new magnetic resonance imaging (MRI) marker of disease progression. Chronic active lesions are characterized by progressive tissue matrix damage, axonal loss and chronic inflammation. Sodium ( Na) MRI provides a biochemical marker of cell integrity and tissue viability in a quantitative manner.
View Article and Find Full Text PDFObjective: Recently, there has been an increasing interest in "chronic enlarging" or "chronic active" multiple sclerosis (MS) lesions that are associated with clinical disability. However, investigation of dynamic lesion volume changes requires longitudinal MRI data from two or more time points. The aim of this study was to investigate the application of texture analysis (TA) on baseline T1-weighted 3D magnetization-prepared rapid acquisition gradient-echo (MPRAGE) images to differentiate chronic active from chronic stable MS lesions.
View Article and Find Full Text PDF