Sodium ion batteries have been receiving increasing attention and may see potential revival in the near future, particularly in large-scale grid energy storage coupling with wind and solar power generation, due to the abundant sodium resources, low cost, and sufficiently high energy density. Among the known sodium ion conductors, the Na-β"-alumina electrolyte remains highly attractive because of its high ionic conductivity. This study focuses on the vapor phase synthesis of a Na-β"-Alumina + YSZ (Naβ"AY) composite sodium electrolyte, which has higher mechanical strength and stability than conventional single phase β"-Alumina.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2013
Based on systematic first principles calculations, we investigate Sr surface segregation (SSS) in La(1-x)Sr(x)Co(1-y)Fe(y)O(3-δ) (LSCF) (a typical perovskite ABO(3) compound), a bottleneck causing efficiency degradation of solid oxide fuel cells. We identify two basic thermodynamic driving forces for SSS and suggest two possible ways to suppress SSS: applying compressive strain and reducing surface charge. We show that compressive strain can be applied through doping of larger elements and surface coating; surface charge can be reduced through doping of higher-valence elements in the Sr- and B-site or lower-valence elements in the La-site and introducing surface A-site vacancies.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
February 2013
Endophytes are microorganisms that live within plant tissues that are potential sources of novel bioactive compounds, including enzymes. We have identified endophytes of the Australian native plant Eremophilia longifolia which were screened for the production of industrially useful enzymes. Seventeen fungal endophytes were isolated from the leaves of E.
View Article and Find Full Text PDFAnalogous to conventional inorganic semiconductors, the performance of organic semiconductors is directly related to their molecular packing, crystallinity, growth mode, and purity. In order to achieve the best possible performance, it is critical to understand how organic semiconductors nucleate and grow. Clever use of surface and dielectric modification chemistry can allow one to control the growth and morphology, which greatly influence the electrical properties of the organic transistor.
View Article and Find Full Text PDFCrystalline self-assembled monolayers (SAMs) of organosilane compounds such as octadecyltrimethoxysilane (OTMS) and octadecyltrichlorosilane (OTCS) were deposited by a simple, spin-casting technique onto Si/SiO(2) substrates. Fabrication of the OTMS SAMs and characterization using ellipsometry, contact angle, atomic force microscopy (AFM), grazing angle attenuated total reflectance Fourier transform infrared (GATR-FTIR) spectroscopy and grazing incidence X-ray diffraction (GIXD) are described. The characterization confirms that these monolayers exhibit a well-packed crystalline phase and a remarkably high degree of smoothness.
View Article and Find Full Text PDF