Publications by authors named "A D Venosa"

Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.

View Article and Find Full Text PDF

Background: Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited.

View Article and Find Full Text PDF

Pre-cancerous lung lesions are commonly initiated by activating mutations in the RAS pathway, but do not transition to lung adenocarcinomas (LUAD) without additional oncogenic signals. Here, we show that expression of the extracellular matrix protein Tenascin-C (TNC) is increased in and promotes the earliest stages of LUAD development in oncogenic KRAS-driven lung cancer mouse models and in human LUAD. TNC is initially expressed by fibroblasts and its expression extends to tumor cells as the tumor becomes invasive.

View Article and Find Full Text PDF

Background: Climatological shifts and human activities have decimated lakes worldwide. Water in the Great Salt Lake, Utah, USA is at near record lows which has increased risks for exposure to windblown dust from dried lakebed sediments. Formal studies evaluating the health effects of inhaled Great Salt Lake dust (GSLD) have not been performed despite the belief that the dust is harmful.

View Article and Find Full Text PDF

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome.

View Article and Find Full Text PDF