This article describes the disinfection by-product (DBP) characterization portion of a series of experiments designed for comprehensive chemical and toxicological evaluation of two drinking-water concentrates containing highly complex mixtures of DBPs. This project, called the Four Lab Study, involved the participation of scientists from four laboratories and centers of the U.S.
View Article and Find Full Text PDFEnviron Sci Technol
December 2006
A survey of disinfection byproduct (DBP) occurrence in the United States was conducted at 12 drinking water treatment plants. In addition to currently regulated DBPs, more than 50 DBPs that rated a high priority for potential toxicity were studied. These priority DBPs included iodinated trihalomethanes (THMs), other halomethanes, a nonregulated haloacid, haloacetonitriles, haloketones, halonitromethanes, haloaldehydes, halogenated furanones, haloamides, and nonhalogenated carbonyls.
View Article and Find Full Text PDFIodoacid drinking water disinfection byproducts (DBPs) were recently uncovered in drinking water samples from source water with a high bromide/iodide concentration that was disinfected with chloramines. The purpose of this paper is to report the analytical chemical identification of iodoacetic acid (IA) and other iodoacids in drinking water samples, to address the cytotoxicity and genotoxicity of IA in Salmonella typhimurium and mammalian cells, and to report a structure-function analysis of IA with its chlorinated and brominated monohalogenated analogues. The iodoacid DBPs were identified as iodoacetic acid, bromoiodoacetic acid, (Z)- and (E)-3-bromo-3-iodopropenoic acid, and (E)-2-iodo-3-methylbutenedioic acid.
View Article and Find Full Text PDFThe aim of this study was to evaluate the formation of toxic and genotoxic compounds in surface drinking waters treated with two widely used disinfectants, sodium hypochlorite (NaClO) and chlorine dioxide (ClO(2)), and a new disinfectant, peracetic acid (PAA). For this purpose a pilot plant was set up to add these biocides continuously to pre-filtered lake water flowing into three different basins. During three seasonal experiments, short-term in vivo tests (with plant, fish and molluscs) and in vitro tests (with bacteria, yeast and human cells) were carried out to evaluate the formation of genotoxic disinfection by-products (DBPs).
View Article and Find Full Text PDFUsing gas chromatography/mass spectrometry (GC/MS), we investigated the formation of disinfection byproducts (DBPs) from high bromide waters (2 mg/L) treated with chlorine or chlorine dioxide used in combination with chlorine and chloramines. This study represents the first comprehensive investigation of DBPs formed by chlorine dioxide under high bromide conditions. Drinking water from full-scale treatment plants in Israel was studied, along with source water (Sea of Galilee) treated under carefully controlled laboratory conditions.
View Article and Find Full Text PDF