Publications by authors named "A D Soyer"

Creatine transporter deficiency (CTD) is an inborn error of creatine (Cr) metabolism in which Cr is not properly distributed to the brain due to a mutation in the Cr transporter (CrT) SLC6A8 gene. CTD is associated with developmental delays and with neurological disability in children. Dodecyl creatine ester (DCE), as a Cr prodrug, is a promising drug to treat CTD after administration by the nasal route, taking advantage of the nose-to-brain pathway.

View Article and Find Full Text PDF

Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [F]2-fluoro-2-deoxy-sorbitol ([F]FDS), which can be easily obtained from simple chemical reduction of commercial [F]2-fluoro-2-deoxy-glucose ([F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging.

View Article and Find Full Text PDF

Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI).

View Article and Find Full Text PDF

Background: The influence of protein hydrolysate produced from bovine liver protein hydrolysate (LPH) by enzymatic hydrolysis, using Alcalase/Protamex (1:1), on lipid dispersions was investigated. LPH production was optimized to maximize the antioxidant activity (at 45, 50, and 55 °C for 12, 18, and 24 h). Different concentrations of LPHs (1, 3, and 5 mg/g) were added to emulsions and to liposomes.

View Article and Find Full Text PDF

Aim: Buprenorphine mainly acts as an agonist of mu-opioid receptors (mu-OR). High dose buprenorphine does not cause respiratory depression and can be safely administered to elicit typical opioid effects and explore pharmacodynamics. Acute buprenorphine, associated with functional and quantitative neuroimaging, may therefore provide a fully translational pharmacological challenge to explore the variability of response to opioids .

View Article and Find Full Text PDF