Front Cell Dev Biol
December 2024
Whole-mount hybridization (WISH) is a widely used method that supports the concept of "seeing is believing" by enabling the visualization of gene expression patterns in whole-mount multicellular samples or sections. This technique is essential in the study of epimorphic regeneration in cold-blooded vertebrates, where complex three-dimensional organs such as tails, limbs, and eyes are completely restored after loss. The tadpoles of the frog serve as a convenient model for studying regeneration, as they can regenerate their tails within a week after amputation.
View Article and Find Full Text PDFHigh-quality-factor optical microresonators have become an appealing object for numerous applications. However, the mid-infrared band experiences a lack of applicable materials for nonlinear photonics. Crystalline germanium demonstrates attractive material properties such as high nonlinear refractive index, large transparency window including the mid-IR band, particularly long wave multiphonon absorption limit.
View Article and Find Full Text PDFBackground: It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research.
View Article and Find Full Text PDFNarrow-linewidth lasers are in extensive demand for numerous cutting-edge applications. Such lasers operating at the visible range are of particular interest. Self-injection locking of a laser diode frequency to a high-Q whispering gallery mode is an effective and universal way to achieve superior laser performance.
View Article and Find Full Text PDF