Peptide coacervates self-assembling via liquid-liquid phase separation are appealing intracellular delivery vehicles of macromolecular therapeutics (proteins, DNA, mRNA) owing to their non-cytotoxicity, high encapsulation capacity, and efficient cellular uptake. However, the mechanisms by which these viscoelastic droplets cross the cellular membranes remain unknown. Here, using multimodal imaging, data analytics, and biochemical inhibition assays, we identify the key steps by which droplets enter the cell.
View Article and Find Full Text PDFGentisate 1,2-dioxygenases belong to the class III ring-cleaving dioxygenases catalyzing key reactions of aromatic compounds degradation by aerobic microorganisms. In the present work, the results of complete molecular, structural, and functional investigations of the gentisate 1,2-dioxygenase (rho-GDO) from a gram-positive bacterium Rhodococcus opacus 1CP growing on 3-hydroxybenzoate as a sole source of carbon and energy are presented. The purified enzyme showed a narrow substrate specificity.
View Article and Find Full Text PDFThree laccase isoforms with different physicochemical properties could be purified from culture liquid of basidiomycete Lentinus strigosus 1566 obtained during submerged cultivation. The purified laccases possessed individual selectivity in relation to different phenolic compounds. Laccases I, II, and III (59, 65, and 61 kDa respectively) were more active in acidic conditions at around 70 °C.
View Article and Find Full Text PDFWe established a new simple approach to study phosphorus (P) and nitrogen (N) reserves at subcellular level potentially applicable to various types of cells capable of accumulating P- and/or N-rich inclusions. Here, we report on using this approach for locating and assessing the abundance of the P and N reserves in microalgal and cyanobacterial cells. The approach includes separation of the signal from P- or N-rich structures from noise on the energy-filtered transmission electron microscopy (EFTEM) P- or N-maps.
View Article and Find Full Text PDFBackground: This work is focused on mechanisms of uptake in cancer cells of rationally designed, covalently assembled nanoparticles, made of superparamagnetic iron oxide nanoparticles (SPIONs), fluorophores (doxorubicin or Nile Blue), polyethylene glycol (PEG) and folic acid (FA), referred hereinafter as SFP-FA.
Methods: SFP-FA were characterized by DLS, zetametry and fluorescence spectroscopy. The SFP-FA uptake in cancer cells was monitored using fluorescence-based methods like fluorescence-assisted cell sorting, CLSM with single-photon and two-photon excitation.