Escalating wildfire frequency and severity, exacerbated by shifting climate patterns, pose significant ecological and economic challenges. Prescribed burns, a common forest management tool, aim to mitigate wildfire risks and protect biodiversity. Nevertheless, understanding the impact of prescribed burns on soil and microbial communities in temperate mixed forests, considering temporal dynamics and slash fuel types, remains crucial.
View Article and Find Full Text PDFCarbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field.
View Article and Find Full Text PDFEnvironmental contamination constrains microbial communities impacting diversity and total metabolic activity. The former S-3 Ponds contamination site at Oak Ridge Reservation (ORR), TN, has elevated concentrations of nitric acid and multiple metals from decades of processing nuclear material. To determine the nature of the metal contamination in the sediment, a three-step sequential chemical extraction (BCR) was performed on sediment segments from a core located upgradient (EB271, non-contaminated) and one downgradient (EB106, contaminated) of the S-3 Ponds.
View Article and Find Full Text PDFBacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence.
View Article and Find Full Text PDFUnconventional oil and gas (UOG) extraction is increasing exponentially around the world, as new technological advances have provided cost-effective methods to extract hard-to-reach hydrocarbons. While UOG has increased the energy output of some countries, past research indicates potential impacts in nearby stream ecosystems as measured by geochemical and microbial markers. Here, we utilized a robust data set that combines 16S rRNA gene amplicon sequencing (DNA), metatranscriptomics (RNA), geochemistry, and trace element analyses to establish the impact of UOG activity in 21 sites in northern Pennsylvania.
View Article and Find Full Text PDF