Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.
View Article and Find Full Text PDFAppropriate treatment of water contributions to protein-ligand interactions is a very challenging problem in the context of adequately determining the number of waters to investigate and undertaking conformational sampling of the ligands, the waters, and the surrounding protein. In the present study, an extension of the Site Identification by Ligand Competitive Saturation-Monte Carlo (SILCS-MC) docking approach is presented that enables the determination of the location of water molecules in the binding pocket and their impact on the predicted ligand binding orientation and affinities. The approach, termed SILCS-WATER, involves MC sampling of the ligand along with explicit water molecules in a binding site followed by selection of a subset of waters within specified energetic and distance cutoffs that contribute to ligand binding and orientation.
View Article and Find Full Text PDFThe study on (Orange Jasmine) stem bark extract found it to have antioxidant and cytotoxic proper-ties. The structures of the isolated phytoconstituents were determined using NMR spectroscopy. Compounds were evaluated for their potential to be aldose reductase inhibitors using molecular docking and dynamics (MD) simulations.
View Article and Find Full Text PDFAn accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li, Na, K, Rb, Cs, and Cl) and common functional groups found in proteins and nucleic acids.
View Article and Find Full Text PDF