Publications by authors named "A D Lipatnikov"

Naturally occurring human antibodies against glycans recognize and quickly eliminate infectious bacteria, viruses and aberrantly glycosylated neoplastic malignant cells, and they often initiate processes that involve the complement system. Using a printed glycan array (PGA) containing 605 glycoligands (oligo- and polysaccharides, glycopeptides), we examined which of the glycan-binding antibodies are able to activate the complement system. Using this PGA, the specificities of antibodies of the IgM and IgG classes were determined in the blood serum of healthy donors (suggested as mostly natural), and, then, using the same array, it was determined which types of the bound immunoglobulins were also showing C3 deposition.

View Article and Find Full Text PDF
Article Synopsis
  • - Fluorescently labeled (strept)avidins are commonly used to detect biotinylated molecules in immunology and histochemistry, but they can also bind to various glycans, including components of blood group antigens and other oligosaccharides.
  • - This binding occurs in a dose-dependent manner, meaning that the presence of certain polymeric glycan conjugates can inhibit this interaction, but monomeric forms do not have the same effect.
  • - The ability of (strept)avidins to bind glycans may lead to inaccuracies in carbohydrate sample analysis, suggesting that researchers should avoid using excessive amounts of (strept)avidin in their experiments to minimize these errors.
View Article and Find Full Text PDF

The high specificity of human antibodies to blood group A and B antigens is impressive, especially when considering the structural difference between these antigens (tetrasaccharides) is a NHAc versus a hydroxyl group on the terminal monosaccharide residue. It is well established that in addition to anti-A and anti-B there is a third antibody, anti-A,B capable of recognizing both A and B antigens. To analyze this AB specificity, we synthesized a tetrasaccharide, where the NHAc of the A antigen was replaced with an NH.

View Article and Find Full Text PDF

Reported in the paper are results of unsteady three-dimensional direct numerical simulations of laminar and turbulent, lean hydrogen-air, complex-chemistry flames propagating in forced turbulence in a box. To explore the eventual influence of thermodiffusive instability of laminar flames on turbulent burning velocity, (i) a critical length scale Λ_{n} that bounds regimes of unstable and stable laminar combustion is numerically determined by gradually decreasing the width Λ of computational domain until a stable laminar flame is obtained, and (ii) simulations of turbulent flames are performed by varying the width from Λ<Λ_{n} (in this case, the instability is suppressed) to Λ>Λ_{n} (in this case, the instability may grow). Moreover, simulations are performed either using mixture-averaged transport properties (low Lewis number flames) or setting diffusivities of all species equal to heat diffusivity of the mixture (equidiffusive flames), with all other things being equal.

View Article and Find Full Text PDF