Publications by authors named "A D Karenowska"

We report measurements made at millikelvin temperatures of a superconducting coplanar waveguide resonator (CPWR) coupled to a sphere of yttrium-iron garnet. Systems hybridising collective spin excitations with microwave photons have recently attracted interest for their potential quantum information applications. In this experiment the non-uniform microwave field of the CPWR allows coupling to be achieved to many different magnon modes in the sphere.

View Article and Find Full Text PDF

We present spatially resolved measurements of the magnon temperature in a magnetic insulator subject to a thermal gradient. Our data reveal an unexpectedly close correspondence between the spatial dependencies of the exchange magnon and phonon temperatures. These results indicate that if--as is currently thought--the transverse spin Seebeck effect is caused by a temperature difference between the magnon and phonon baths, it must be the case that the magnon temperature is spectrally nonuniform and that the effect is driven by the sparsely populated dipolar region of the magnon spectrum.

View Article and Find Full Text PDF

We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium while a wave is inside, this wave is coupled to a secondary counterpropagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves.

View Article and Find Full Text PDF

The time reversal of pulsed signals or propagating wave packets has long been recognized to have profound scientific and technological significance. Until now, all experimentally verified time-reversal mechanisms have been reliant upon nonlinear phenomena such as four-wave mixing. In this paper, we report the experimental realization of all-linear time reversal.

View Article and Find Full Text PDF