Background: Head and neck cancer (HNC) is amongst the 10 most common cancers worldwide and has a major effect on patients' quality of life. Given the complexity of this unique group of patients, a multidisciplinary team approach is preferable. Amongst the debilitating sequels of HNC and/or its treatment, swallowing, speech and voice impairments are prevalent and require the involvement of speech-language pathologists (SLPs).
View Article and Find Full Text PDFClinical applications of CAR-T cells are limited by the scarcity of tumor-specific targets and are often afflicted with the same on-target/off-tumor toxicities that plague other cancer treatments. A new promising strategy to enforce tumor selectivity is the use of logic-gated, two-receptor systems. One well-described application is termed Tmod™, which originally utilized a blocking inhibitory receptor directed towards HLA-I target antigens to create a protective NOT gate.
View Article and Find Full Text PDFInnovative cell-based therapies are important new weapons in the fight against difficult-to-treat cancers. One promising strategy involves cell therapies equipped with multiple receptors to integrate signals from more than one antigen. We developed a specific embodiment of this approach called Tmod, a two-receptor system that combines activating and inhibitory inputs to distinguish between tumor and normal cells.
View Article and Find Full Text PDFImmune cells that are engineered with receptors to integrate signals from multiple antigens offer a promising route to achieve the elusive property of therapeutic selectivity in cancer patients. Several types of multi-signal integrators have been described, among them mechanisms that pair activating and inhibitory receptors which are termed NOT gates by analogy to logical operations performed by machines. Here we review one such NOT-gated signal integrator called the Tmod system which is being developed for patients with solid tumors.
View Article and Find Full Text PDF