Background: A better understanding of the molecular process that drive Alzheimer's disease(AD) are required to develop effective biomarkers and therapies. This includes determining how essential elements like Fe, Cu and Zn are involved in the disease. In the literature there is debate over the role of iron in AD and there are reports of increased, decreased and unchanged levels of Fe in AD brain.
View Article and Find Full Text PDFBackground: Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD). We have recently published that lower brain mitochondrial DNA copy number (mtDNAcn) is associated with increased risk of AD neuropathological change and reduced cognitive performance. Here, we addressed how mtDNAcn affects cell-type specific phenotypes.
View Article and Find Full Text PDFBackground: The multisite SuperAging Research Initiative (SRI) was established in 2021 to identify resilience and resistance factors promoting cognitive healthspan through a harmonized multidisciplinary protocol with prospective data collection. The designation of SuperAger is reserved for individuals age 80+ with episodic memory performance that is at least average for those 2-3 decades younger. Research studies of this relatively uncommon phenotype allow for investigations of fundamental importance to the neurobiology of brain aging, resilience, resistance, and avoidance of cognitive decline related to "average aging" and more severe impairments associated with Alzheimer's and related dementias (ADRD).
View Article and Find Full Text PDFIntroduction: Measurements of health-related quality of life (HRQoL) are important for capturing disease impact beyond physical health and relative to other diseases but have rarely been assessed in primary progressive aphasia (PPA).
Methods: HRQoL was characterized overall, by sex and subtype in PPA ( = 118) using the Health Utilities Index-2/3 (HUI2/3). Multiple linear regression assessed associations between HRQoL and language severity.
Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. In the present study, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34,774 conditionally distinct expression quantitative trait locus (eQTL) signals at 18,476 genes. Over half of eQTL genes exhibited at least two eQTL signals.
View Article and Find Full Text PDF