Arch Toxicol
November 2024
Fluorescence spectroscopy is an attractive candidate for analyzing samples of nylon. Impurities within the polymers formed during the synthesis and processing of nylons give rise to the observed fluorescence, allowing for nylons to be analyzed based on their impurities. Nylons from the same source are expected to display similar fluorescence profiles, and nylons with different fluorescence are expected to be from different sources.
View Article and Find Full Text PDFMicroplastics have garnered an infamous reputation as a sorbate for many concerning environmental pollutants and as a delivery vehicle for the aquatic food chain through the ingestion of these contaminated small particulates. While sorption mechanisms have been extensively studied for polycyclic aromatic hydrocarbons, polycyclic aromatic sulfur heterocycles (PASHs) have not been investigated, partly due to their low concentrations in aquatic ecosystems. Herein, an analytical methodology is presented for the analysis of dibenzothiophene, benzo[b]naphtho[1,2-b]thiophene, benzo[b]naphtho[2,1-b]thiophene, benzo[b]naphtho[2,3-b]thiophene, chryseno[4,5-bcd]thiophene and dinaphtho[1,2-b:1',2'-d]thiophene at relevant environmental concentrations based on solid phase extraction and high-performance liquid chromatography.
View Article and Find Full Text PDFRhodamine B is a synthetic dye known to enhance the visual appearance of chili powder. Due to its toxicity and carcinogenicity, chromatographic methods have been developed to monitor its presence in adulterated chili powder, but their assays are laborious, time consuming and expensive for screening purposes. The present studies propose an alternative for screening Rhodamine B in chili powder samples.
View Article and Find Full Text PDFBackground: Polycyclic aromatic hydrocarbons (PAHs) with molecular mass 302 Da are the most investigated PAHs within the high molecular weight PAHs class. This PAH class contributes to a significant portion of the mutagenic and/or carcinogenic response associated to the PAH fraction present in environmental and combustion-related samples. Several reasons prevent the routine analysis of 302 Da PAHs in environmental samples, including large number of possible isomers, limited number of commercially available reference standards, and low concentration levels.
View Article and Find Full Text PDF