Publications by authors named "A D Aertsen"

In order to increase our command over genetically engineered bacterial populations in bioprocessing and therapy, synthetic regulatory circuitry needs to enable the temporal programming of a number of consecutive functional tasks without external interventions. In this context, we have engineered a genetic circuit encoding an autonomous but chemically tunable timer in Escherichia coli, based on the concept of a transcription factor cascade mediated by the cytoplasmic dilution of repressors. As proof-of-concept, we used this circuit to impose a time-resolved two-staged synthetic pathway composed of a production-followed-by-lysis program, via a single input.

View Article and Find Full Text PDF

The UV resistance of bacterial endospores is an important quality supporting their survival in inhospitable environments and therefore constitutes an essential driver of the ecological success of spore-forming bacteria. Nevertheless, the variability and evolvability of this trait are poorly understood. In this study, directed evolution and genetics approaches revealed that the Bacillus cereus pdaA gene (encoding the endospore-specific peptidoglycan-N-acetylmuramic acid deacetylase) serves as a contingency locus in which the expansion and contraction of short tandem repeats can readily compromise (PdaA) or restore (PdaA) the pdaA open reading frame.

View Article and Find Full Text PDF
Article Synopsis
  • Generalized transduction is crucial for bacterial evolution, yet the specific features and differences among phages remain unclear.
  • The study sequenced and analyzed the transducing particle content of three Salmonella Typhimurium phages (Det7, ES18, and P22) that utilize a similar headful packaging mechanism, revealing significant differences in the amount and type of transducing particles they produce.
  • Det7 demonstrated a higher quantity of transducing particles compared to ES18, while P22 exhibited distinct content, with conserved pac-like sequences identified in the host chromosome influencing increased packaging and transduction rates, particularly in a 561 kb host region.
View Article and Find Full Text PDF

Extensive coevolution has led to utterly intricate interactions between phages and their bacterial hosts. While both the (short-term) intracellular molecular host-subversion mechanisms during a phage infection cycle and the (long-term) mutational arms race between phages and host cells have traditionally received a lot of attention, there has been an underestimating neglect of (mid-term) transmission strategies by which phages manage to cautiously spread throughout their host population. However, recent findings underscore that phages encode mechanisms to avoid host cell scarcity and promote coexistence with the host, giving the impression that some phages manage to 'farm' their host population to ensure access to host cells for lytic consumption.

View Article and Find Full Text PDF

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.

View Article and Find Full Text PDF