We have carried out studies to examine the possibility of using biosorbents: the epigeic mosses Pleurozium schreberi (Willd. ex Brid.) Mitt.
View Article and Find Full Text PDFIntensities of lines in the near-infrared second overtone band (3-0) of ^{12}C^{16}O are measured and calculated to an unprecedented degree of precision and accuracy. Agreement between theory and experiment to better than 1‰ is demonstrated by results from two laboratories involving two independent absorption- and dispersion-based cavity-enhanced techniques. Similarly, independent Fourier transform spectroscopy measurements of stronger lines in this band yield mutual agreement and consistency with theory at the 1‰ level.
View Article and Find Full Text PDFCavity ring-down spectroscopy is a ubiquitous optical method used to study light-matter interactions with high resolution, sensitivity and accuracy. However, it has never been performed with the multiplexing advantages of direct frequency comb spectroscopy without significantly compromising spectral resolution. We present dual-comb cavity ring-down spectroscopy (DC-CRDS) based on the parallel heterodyne detection of ring-down signals with a local oscillator comb to yield absorption and dispersion spectra.
View Article and Find Full Text PDFFrequency-based cavity mode-dispersion spectroscopy (CMDS), previously applied for Doppler-limited molecular spectroscopy, is now employed for the first time for saturation spectroscopy. Comparison with two intensity-based, cavity-enhanced absorption spectroscopy techniques, i.e.
View Article and Find Full Text PDF