We report a novel, metal-free procedure for the direct aminophosphonation of imidazo[1,2-a]pyridines in green solvents under open air conditions. This method is characterized by its mild and sustainable conditions, ease of operation, scalability, and excellent functional group compatibility. The synthesized compounds exhibit promising photophysical properties, including significant Stokes shifts and quantum yields, making them potential candidates for innovative fluorescent probes.
View Article and Find Full Text PDFThe interest in 3,4-dihydropyrimidine-2(1)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised.
View Article and Find Full Text PDFA method for the synthesis of ketones from aldehydes and boronic acids via a transition-metal-free C-H functionalization reaction is reported. The method employs nitrosobenzene as a reagent to drive the simultaneous activation of the boronic acid as a boronate and the activation of the C-H bond of the aldehyde as an iminium species that triggers the key C-C bond-forming step via an intramolecular migration from boron to carbon. These findings constitute a practical, scalable, and operationally straightforward method for the synthesis of ketones.
View Article and Find Full Text PDFThis tutorial review describes recent developments in carbon-nitrogen bond-forming reactions (amination, amidation, nitration and nitrosation) that involve the use of boronic acids and some of their derivatives as carbon-nucleophiles in the absence of transition-metals. Issues pertaining to reagents and mechanisms are discussed.
View Article and Find Full Text PDFThe selective synthesis of mono--methyl aromatic amines was achieved by the reaction of aromatic nitroso compounds with methylboronic acid promoted by triethylphosphite under transition metal-free conditions. The target compounds are constructed efficiently without overmethylation, under environmentally benign reaction conditions that do not require bases or reductants and therefore are of interest in pharmaceutical, agricultural, and chemical industries.
View Article and Find Full Text PDF