Publications by authors named "A Crossthwaite"

Article Synopsis
  • * Using these insecticides over time can lead to bugs becoming resistant to them, which is a big problem that needs solving.
  • * A new study found that some exciting new chemicals can help fight pests by targeting a specific part of the bug's nervous system called the vesicular acetylcholine transporter.
View Article and Find Full Text PDF

Pyridine alkylsulfone derivatives typified by oxazosulfyl (Sumitomo Chemical Company Ltd.) and compound A2 (Syngenta) represent a new class of insecticides, with potent activity against several insect orders. Whilst the MOA of this class has been attributed to interaction with the voltage-gated sodium channel (VGSC), here we present strong evidence that their toxicity to insects is mediated primarily through inhibition of the vesicular acetylcholine transporter (VAChT).

View Article and Find Full Text PDF

There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest.

View Article and Find Full Text PDF

Isocycloseram is a novel isoxazoline insecticide and acaricide with activity against lepidopteran, hemipteran, coleopteran, thysanopteran and dipteran pest species. Isocycloseram selectively targets the invertebrate Rdl GABA receptor at a site that is distinct to fiproles and organochlorines. The widely distributed cyclodiene resistance mutation, A301S, does not affect sensitivity to isocycloseram, either in vitro or in vivo, demonstrating the suitability of isocylsoseram to control pest infestations with this resistance mechanism.

View Article and Find Full Text PDF

Insecticide resistance has been and continues to be a significant problem for invertebrate pest control. As such, effective insecticide resistance management (IRM) is critical to maintain the efficacy of current and future insecticides. A technical group within CropLife International, the Insecticide Resistance Action Committee (IRAC) was established 35 years ago (1984) as an international association of crop protection companies that today spans the globe.

View Article and Find Full Text PDF