Publications by authors named "A Couairon"

We study the use of Laguerre-Gaussian (LG) femtosecond laser filament with multi GW peak power to guide electric sparks in the atmosphere. We demonstrate that an LG beam with a vortex phase or with 6 azimuthal phase steps generates a filamentation regime, where a longer and more uniform energy deposition is produced compared to a normal beam with a flat phase. Such filaments can guide electric discharges over much longer distances.

View Article and Find Full Text PDF

We demonstrated a method for in situ temporal characterization of an intense femtosecond laser pulse around its focus where the laser intensity exceeds 10 W/cm. Our method is based on the second harmonic generation (SHG) by a relatively weak femtosecond probe pulse and the intense femtosecond pulses under analysis in the gas plasma. With the increase in the gas pressure, it was found that the incident pulse evolves from a Gaussian profile to a more complicated structure featured by multiple peaks in the temporal domain.

View Article and Find Full Text PDF

We present an experimental method capable of capturing the complete spatio-temporal dynamics of filamenting ultrashort laser pulses. By employing spatially resolved Fourier transform spectrometry in combination with the capability to terminate the filament at any length, we can follow the nonlinear dynamics in four dimensions, i.e.

View Article and Find Full Text PDF

High-intensity (∼1 TW/cm2 and higher) region formed in the propagation of ∼60 GW, 90 fs Ti:Sapphire laser pulse on a ∼100 m path in air spans for several tens of meters and includes a plasma filament and a postfilament light channel. The intensity in this extended region is high enough to generate an infrared supercontinuum wing and to initiate laser-induced discharge in the gap between the electrodes. In the experiment and simulations, we delay the high-intensity region along the propagation direction by inserting metal-wire meshes with square cells at the laser system output.

View Article and Find Full Text PDF

Experiments and simulations are performed to study filamentation and generation of acoustic waves in water by loosely focused multi-millijoules laser pulses. When the laser pulse duration is increased from femtosecond to nanosecond duration, a transition is observed from a filamentary propagation with extended and low energy density deposition to a localized breakdown, related to high energy density deposition. The transition suggests that Kerr self-focusing plays a major role in the beam propagation dynamics.

View Article and Find Full Text PDF